If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=125=0
We move all terms to the left:
x^2-(125)=0
a = 1; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·1·(-125)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*1}=\frac{0-10\sqrt{5}}{2} =-\frac{10\sqrt{5}}{2} =-5\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*1}=\frac{0+10\sqrt{5}}{2} =\frac{10\sqrt{5}}{2} =5\sqrt{5} $
| (2c-10)=100 | | ×+3y-4=0 | | 7+3y=38 | | 6(x+4)-8=2x+4(5+x) | | -36=-6r | | 50-7k=3k | | 11^(y+2)=15 | | 13/2.25=x | | a-8=-3/2 | | 5^(-4y)=12 | | -12=-6r | | (3x²+4x)/(2x+9)=5 | | 3/6.75=x/13 | | 6.75/3=13/x | | 5(2c+7)=7(c+5) | | 2k^+64=-24k | | 8/2b=2I | | 10x+4=6x-6 | | y^2+11y=-28 | | -1=-3u+5(u+3) | | 17/x+3/2=-16 | | 3y+6=5y*18 | | X3+6x2+5x=0 | | y2=+11y=-28 | | d/4+3=13 | | 2(x-5)=23 | | 3(y-7)-8y=19 | | 14x^2+35x=0 | | 32(x+7)=6(42x)+10x | | 6x-13=-37 | | 5x^2+14=9 | | y2+11y=-28 |